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Complex Integral:

This is an extension of
Laplace’s method to treat
integrals in the complex plane.

The method was published by
Peter Debye in 1909. Debye noted
in his work that the method was
developed in a unpublished note by
Bernhard Riemann (1863).

Peter Joseph William Georg Friedrich Bernhard
Debye (March 24, Riemann (September 17, 1826 —
1884 — November 2, July 20, 1866) was an influential
1966) was a Dutch German mathematician who made
physicist and physical lasting contributions to analysis
chemist, and Nobel and differential geometry, some of
laureate in Chemistry. them enabling the later

development of general relativity.

http://en.wikipedia.org/wiki/Peter_Debye

http://en.wikipedia.org/wiki/Bernhard_Riemann
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Complex Integral:

1(Q) =j f(z)e*dz

The functions f (z) and g(z) are analytic (except for poles or branch
points), so that the path C may be deformed if necessary (possibly
adding residue contributions or branch-cut integrals).

Saddle Point (SP): g’(zo) -0
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Path deformation:

If the path does not go through a saddle point, we assume that it can be
deformed to do so.

If any singularities are encountered during the path deformation, they must be
accounted for (e.g., residue of captured poles).




Denote g(z):u(z)+ jV(Z)
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== If U, <0, then u, >0

Near the saddle point:

1
u(x, y)zu(xo,y0)+§uxx(x—xo)2

l
) Uy, (Y - yO) Uy (X=X ) (Y = ¥o)

Ignore (rotate coordinates to eliminate).




1 1
U(X, y)zu(XO’yO)_l_Euxx(X_XO)z+Euyy(y_yo)2 +ny(X—XO)(y—y0)

In the rotated coordinate system:

! ! !/ ! 1 ! !
U(X’Y)zu(xo’y0)+§ux'x'(x_Xo) (y yo)

2yy

Assume that the coordinate system is rotated so that

U, <0 u, >0



Steepest-Descent Method (cont.)

The U(X’, y') function has a “saddle” shape near the saddle point:

u(x’,y’)




Steepest-Descent Method (cont.)
u(x,y)

Note: The saddle does not necessarily open along one of the principal axes
(only when u,, (Xo, ¥o) = 0).



Along any descending path (where the u function decreases):

| (Q) o (Zo)eﬂg(Zo)IeQ[G(Z)—g(Zo)]dZ
c

| (Q) ~f (ZO)ng(zo)J‘ejQ[v(z)—v(zo)} eQ[u(z)—u(zo)]dz
C

/

Behaves like a delta function

Both the phase and amplitude change along an arbitrary descending path C.

If we can find a path along which the phase does not change (v is constant),
then the integral will look like that in Laplace’s method.
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Choose path of constant phase:

C,: Vv(z)=v(z,)=constant
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Gradient Property (proof on next slide):

Vu(x,y) isparalleltoC,

Hence C, is either a “path of steepest descent” (SDP)
or a “path of steepest ascent” (SAP).

(Of course, we want to choose the SDP.)

SDP: u(x,y) decreases as fast as possible along the path away from the saddle point.

SAP: u(x,y) increases as fast as possible along the path away from the saddle point.
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Proof of gradient property
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g(z)=u(z)+

Also, Vv L C, (visconstanton C,)

Hence VU || Co

jv(z)
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Recall:

| (Q) ~ f (ZO)ng(zO)J‘ejQ[v(z)—v(zo)] eQ[u(z)—u(zO)]dz
C

Because the v function is constant along the SDP, we have

() ~ f(z,)e™®) [ ™z

SDP

or

| (Q) ~ (Zo)eﬂg(zo) j ol9(d)-9(x)] 4,

SDP [

This is real on the SDP.
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Local behavior near the saddle point

0(2)=0(2)+ g/a)(2-2) 50" (2) ()

so 9(z)-9(z) z%g”(zo)(z - Z0)2

Denote  §"(Z,) = Rel

_ i
Z—7,="re

Then we have

9(2)-9(z,) = Rre el
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g(z)—g(zo)z%(er)ej(“+2¢) => u(z)-u(z) z%(er)cos(a+2¢)

SAP:  a+2¢=0+2zn u(z)—u(zo)zier
¢:—a,—a+7z v(z)-v(z,) =0
2 2
SDP:  a+2¢=7+27n 0(2)-u(z,) = - L Rr?
2
a 7T a 7T
- 4 v(z)—-v(z,)=0
p=— T T (2) —V(z,)

Note: The two paths are 90° apart at the saddle point.



U increases

U decreases
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Steepest-Descent Method (cont.)
u(x, y)
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Steepest-Descent Method (cont.)

() ~ (z,)e™® [ e™ gz

SDP

Define $*=U(Z,)—U(Z)  This defines
Z=12(9)

u(xy)
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+00 2 (dz
1(Q) ~ f Q0(z0) [T g0 (—jd
(Q)~ f(z,)e Loe s S

()~ T (z,)e™) (ﬁj ["eods
s=0

ds ). ,°—

(This gives the leading term of the asymptotic expansion.)

Hence
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To evaluate the derivative:

—s* =u(z)-u(z,)

= (Z) —0 (Zo ) (Recall: v is constant along SDP.)

ds
—25 (d_ =( ' ( Z) At the saddle point this gives 0 = 0.
Z

Take one more derivative:

ds \( ds d“s
_2 e e _2 2 _a”
(dzj(dzj Sdz2 9"(2)
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SO

Hence, we have

I(Q)~f(zo)eﬂg(zo)( —ZO)JM z
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Note: There is an ambiguity in sign for the square root:

1/2

&) 7
dS s=0 g”(zo)

To avoid this ambiguity, define

dz
arg (El—o — QSDP /
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The derivative term is therefore

(%o i \/ 9”?20)\

e jeSDP
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To find Gpp :

Denote:
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SDP

QSDP

\ X
SAP

a 7T
O = ——+—
SDP 2 2

N —

a=arg(9"(z)

Note: The direction of
Integration determines
The sign.

The “user” must
determine this.
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Summary

1(Q) :j f(z)e*""dz

C
()= £ ()¢ |7 el
( ) (0) ®) grr(zo)‘
QSDP:_%i%
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wl2
—j COS Qcos z)dz
wl2

_;ReI(Q)

where

| (Q):J‘”/Z eQ(jcosz)dz

—7l2

Hence, we identify:
9'(zy)=—]sinz; =0
f(z)=1
g(z)=jcosz => 7,=0xnx
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N | N

HSDP -
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|dentify the SDP and SAP:

g(z)=jcos(x+ jy)
= j[cosxcosh y— jsin xsinh y]

u(x,y)=sinxsinhy

v(x,y)=cosxcoshy

SDP and SAP:  V(Z)=V(Z,) = constant

cos x cosh y = constant = cos(0)cosh(0) =1
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SDP and SAP:

cosxcoshy=1

Examination of the u function
reveals which of the two paths
Is the SDP.

u(x,y)=sinxsinhy

SAP

NN

SDP
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Vertical paths are added so that
the path now has limits at infinity.

SDP=C+C,+C,

It is now clear which choice is
correct for the departure angle:

T
Ospp = ——

A

| (Q) = ISDP - Ivl_ |v2
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I ~ f Qg(zo)\/ﬂ' 2 165pp
sop =~ T(2;)€ O g"(zo)‘e

This is the answer for I(Q2) if we ignore the contributions from the vertical paths.

Hence, > .
1(Q)~ (1 erCOS(O)\/ﬂ\/ g 4
or

1(Q)~ Z—ﬁej(ﬂ_ZJ
Q
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Hence
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Examine the path C, (the path C, is similar).

y
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0

j jQCOS(———I—jyj y _ J

0

00)

e —Qsinh ydy _ _JJ. e—Qsinh ydy
0

8'—10

. T . . . ..
since COS(—E—F jyj:sm(jy)z jsinhy

Use integration by parts (we can also use Watson’s Lemma):

e—Q sinh y ) dy

o0 I . 1
0 V1~_J 5

(Qcosh yjdy

-]
0
.y {QCOShyJ Qsmhy)

36



Hence,

Note: I, is negligible compared to the saddle-point contribution as 2 — .

However, if we want an asymptotic expansion that is accurate to order 1/ Q,
then the vertical paths must be considered.
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Alternative evaluation of I, using Watson’s Lemma (alternative form):

o0

|, = —jj e 2SI Y gy Use
0 s=sinh(y)
= —j_([ e s ﬁﬁ ds Applying Watson’s Lemma:
2
=— jTe_QS : ds 1-]|-—SZ -5

0 \/1+sinh2(y)

o0

= —jje_Qs L ds T T g2
g 1+52 |, ~ —j_[e‘QS(l)ds — j_“e‘QS (—Z)ds T



" JTe‘QS ds — JTe QS( jds+...
0

0

SO ) )
|, ~ —jj‘e‘QS ds +%_“e‘QS s2ds + ...
0 0
Recall: o
jo s“e " ds = ——T(a, +1)
I(x)=(x-1)! _[ t* e 'dt
Hence,
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By using Watson's lemma, we can obtain the complete asymptotic expansion of the
integral in the steepest-descent method, exactly as we did in Laplace's method.

(@)= f(z)e™dz

d

Assume: h(s) ~ as" as s—0
n=0,1,2.
Then we have
a n+1
1 (Q) ~ ) ” F(—j
(n+1) 2
n=0,2,4
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